Parametrising clusters of sections

Laura Brustenga i Moncusí Advisor: Joaquim Roé Vellvé

Universitat Autònoma de Barcelona

31th January 2020

Motivation:

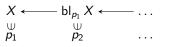
Kleiman's iterated blow ups
 +
 +
 Degenerations of surfaces

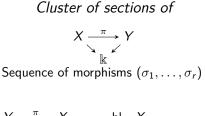
- Parametrise (families) of clusters of points ------> of sections
- \dagger + "all" its infinitesimal information + families of degenerations

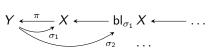
Definition (Ordered clusters)

(Ordered) cluster of points of
$$X \rightarrow \Bbbk$$

Sequence of points (p_1, \ldots, p_r)





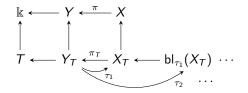


GOAL: Parametrise clusters of ...

- ... of points ------> Kleiman's iterated blow ups
- ... of sections -----> Universal scheme of clusters of sections

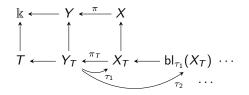
Definition (in family)

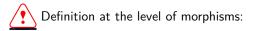
The functor $C_r \colon \operatorname{Sch}_{\Bbbk} \longrightarrow \operatorname{Set}$ sends $T \longrightarrow \Bbbk$ to $C_r(T/\Bbbk) := \{ \text{cluster of sections } (\tau_1, \dots, \tau_r) \text{ of } \pi_T \colon X_T \longrightarrow Y_T \}$



Definition (in family)

The functor $C_r \colon \operatorname{Sch}_{\Bbbk} \longrightarrow \operatorname{Set}$ sends $T \longrightarrow \Bbbk$ to $C_r(T/\Bbbk) := \{ \text{cluster of sections } (\tau_1, \dots, \tau_r) \text{ of } \pi_T \colon X_T \longrightarrow Y_T \}$

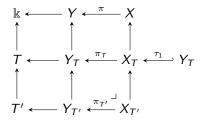




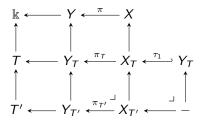
Strong regularity conditions on π

From
$$T' \xrightarrow{f} T$$
 and $\tau = (\tau_1, \dots, \tau_r) \in \mathcal{C}_r(T)$ build
 $\mathcal{C}_r(f)(\tau) = (\tau'_1, \dots, \tau'_r) \in \mathcal{C}_r(T')$

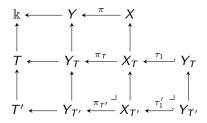
From
$$T' \xrightarrow{f} T$$
 and $\tau = (\tau_1, \dots, \tau_r) \in \mathcal{C}_r(T)$ build
 $\mathcal{C}_r(f)(\tau) = (\tau'_1, \dots, \tau'_r) \in \mathcal{C}_r(T')$



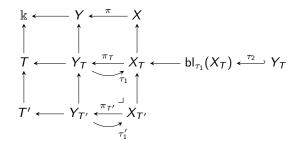
From
$$T' \xrightarrow{f} T$$
 and $\tau = (\tau_1, \dots, \tau_r) \in \mathcal{C}_r(T)$ build
 $\mathcal{C}_r(f)(\tau) = (\tau'_1, \dots, \tau'_r) \in \mathcal{C}_r(T')$



From
$$T' \xrightarrow{f} T$$
 and $\tau = (\tau_1, \dots, \tau_r) \in \mathcal{C}_r(T)$ build
 $\mathcal{C}_r(f)(\tau) = (\tau'_1, \dots, \tau'_r) \in \mathcal{C}_r(T')$

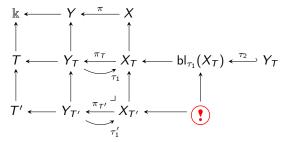


From
$$T' \xrightarrow{f} T$$
 and $\tau = (\tau_1, \dots, \tau_r) \in \mathcal{C}_r(T)$ build
 $\mathcal{C}_r(f)(\tau) = (\tau'_1, \dots, \tau'_r) \in \mathcal{C}_r(T')$



 $\mathcal{C}_r(\mathcal{T}/\Bbbk) = \{ \text{cluster of sections } (\tau_1, \dots, \tau_r) \text{ of } \pi_{\mathcal{T}} \colon X_{\mathcal{T}} \longrightarrow Y_{\mathcal{T}} \}$

From
$$T' \xrightarrow{f} T$$
 and $\tau = (\tau_1, \dots, \tau_r) \in \mathcal{C}_r(T)$ build
 $\mathcal{C}_r(f)(\tau) = (\tau'_1, \dots, \tau'_r) \in \mathcal{C}_r(T')$



Steady family $\pi: X \rightarrow Y$: regularity conditions to define C_r

First result (existence)

Theorem

lf

- $X \xrightarrow{\pi} Y$ is a steady family (to define C_r)
- Y is proper
- X is quasiprojective

then

the functor \mathcal{C}_r is representable by a scheme Cl_r

the r-th Universal scheme of families of section-clusters (Ucs) over π Proof.

First result (existence)

Theorem

lf

- $X \xrightarrow{\pi} Y$ is a steady family (to define C_r)
- Y is proper
- X is quasiprojective

then

```
the functor C_r is representable by a scheme CI_r
```

the r-th Universal scheme of families of section-clusters (Ucs) over π

Proof. $r = 1 \rightarrow Grothendieck's FGA.$

First result (existence)

Theorem

lf

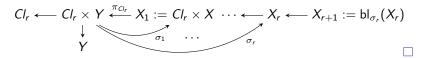
- $X \xrightarrow{\pi} Y$ is a steady family (to define C_r)
- Y is proper
- X is quasiprojective

then

the functor C_r is representable by a scheme Cl_r

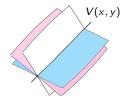
the r-th Universal scheme of families of section-clusters (Ucs) over π

Proof. Assume $(Cl_r, (\sigma_1, \ldots, \sigma_r))$ exists,



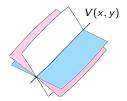
Example: pencil of planes through a line

$$\pi : X = \mathbb{P}^3_{\Bbbk} \setminus V(x, y) \longrightarrow \mathbb{P}^1_{\Bbbk}$$
$$(x : y : z : w) \longmapsto (x : y)$$



Example: pencil of planes through a line

$$\pi : X = \mathbb{P}^3_{\Bbbk} \setminus V(x, y) \longrightarrow \mathbb{P}^1_{\Bbbk}$$
$$(x : y : z : w) \longmapsto (x : y)$$

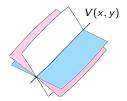


Fibre of π at $(\alpha:\beta)\in\mathbb{P}^1_\Bbbk$

$$\pi^{-1}((lpha:eta)) = V\left(\left| egin{array}{cc} x & y \ lpha & eta \end{array}
ight|
ight) \cap X$$

Example: pencil of planes through a line

$$\pi : X = \mathbb{P}^3_{\Bbbk} \setminus V(x, y) \longrightarrow \mathbb{P}^1_{\Bbbk}$$
$$(x : y : z : w) \longmapsto (x : y)$$



Fibre of π at $(\alpha : \beta) \in \mathbb{P}^1_{\mathbb{k}}$ $\pi^{-1}((\alpha : \beta)) = V\left(\begin{vmatrix} x & y \\ \alpha & \beta \end{vmatrix} \right) \cap X$

• Case r = 1 (parametrise sections of π):

$$Cl_1 \cong \mathbb{A}^4_{a,b,c,d} \stackrel{\mathsf{open}}{\longrightarrow} \mathbb{G}(1,3), \text{ with}$$

$$(a,b,c,d)\in \mathbb{A}^4_{\Bbbk} \longmapsto egin{cases} ax+by-z\ cx+dy-w \end{cases}$$

• Case r = 2 (pairs of (possibly infinitely near) sections):

$$\mathbb{A}^4_{a,b,c,d}\times\mathbb{A}^4_{a',b',c',d'}\supseteq\Delta$$

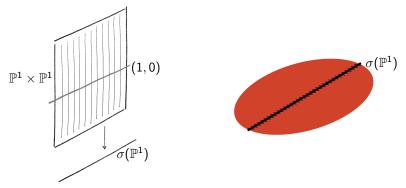
• Case r = 2 (pairs of (possibly infinitely near) sections):

$$\mathbb{A}^4_{a,b,c,d}\times\mathbb{A}^4_{a',b',c',d'}\supseteq\Delta$$

• Case r = 2 (pairs of (possibly infinitely near) sections):

$$\mathbb{A}^4_{a,b,c,d} \times \mathbb{A}^4_{a',b',c',d'} \supseteq \Delta$$

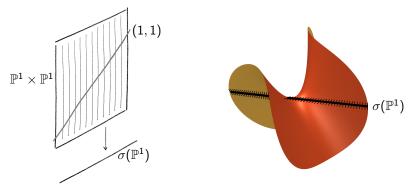
σ: P¹_k→X a section of π, that is, a line σ(P¹_k) ⊆ X
 τ: P¹_k→bl_σ X a section of bl_σ X→X→P¹_k, (the exceptional divisor is P¹ × P¹)



• Case r = 2 (pairs of (possibly infinitely near) sections):

$$\mathbb{A}^4_{a,b,c,d} \times \mathbb{A}^4_{a',b',c',d'} \supseteq \Delta$$

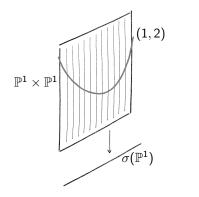
σ: P¹_k→X a section of π, that is, a line σ(P¹_k) ⊆ X
 τ: P¹_k→bl_σ X a section of bl_σ X→X→P¹_k, (the exceptional divisor is P¹ × P¹)

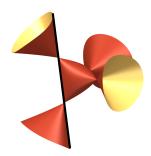


• Case r = 2 (pairs of (possibly infinitely near) sections):

$$\mathbb{A}^4_{a,b,c,d}\times\mathbb{A}^4_{a',b',c',d'}\supseteq\Delta$$

σ: P¹_k→X a section of π, that is, a line σ(P¹_k) ⊆ X
 τ: P¹_k→bl_σ X a section of bl_σ X→X→P¹_k, (the exceptional divisor is P¹ × P¹)





• Case r = 2 (pairs of (possibly infinitely near) sections):

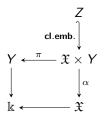
$$\mathbb{A}^4_{a,b,c,d}\times\mathbb{A}^4_{a',b',c',d'}\supseteq\Delta$$

$$Cl_2 = V_0 \sqcup V_1 \sqcup \bigsqcup_{n \ge 2} V_n$$

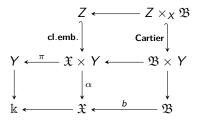
 $\mathbb{A}^4 imes \mathbb{A}^4 = \left(T \setminus \Delta \right) \sqcup \left((\mathbb{A}^4 imes \mathbb{A}^4) \setminus T \right) \sqcup \left(\Delta \right)$

• "all" infinitesimal information...as a Y-scheme!

The blow up split section family

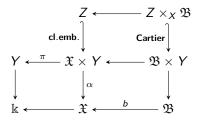


The blow up split section family



The couple (\mathfrak{B}, b) is the blow up §family of π along Z.

The blow up split section family



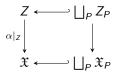
The couple (\mathfrak{B}, b) is the blow up §family of π along Z.

Theorem

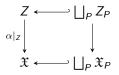
- lf
 - \mathfrak{X} quasiprojective
 - Y proper, smooth and irreducible,

then (\mathfrak{B}, b) exists.

Flattening stratification:

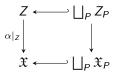


Flattening stratification:



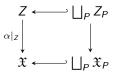
• Unique stratum $\Delta := \mathfrak{X}_P$, the core, such that $Z_P \rightarrow \mathfrak{X}_P \times Y$ is iso.

Flattening stratification:



- Unique stratum $\Delta := \mathfrak{X}_P$, the core, such that $Z_P \rightarrow \mathfrak{X}_P \times Y$ is iso.
- For every *P*, there is $U_P \subseteq \mathfrak{X}_P$ such that $Z_P \cap U_P \rightarrow U_P \times Y$ is Cartier.

Flattening stratification:



- Unique stratum $\Delta := \mathfrak{X}_P$, the core, such that $Z_P \rightarrow \mathfrak{X}_P \times Y$ is iso.
- For every *P*, there is $U_P \subseteq \mathfrak{X}_P$ such that $Z_P \cap U_P \rightarrow U_P \times Y$ is Cartier.

Theorem

lf

- \mathfrak{X} is quasiprojective
- *Y* is projective and smooth

then,

$$\mathfrak{B} \setminus b^{-1}(\Delta) \cong \bigsqcup_{P} U_{P}.$$

The blow up §family and Ucs (iterative construction)

Consider the blow up §family (\mathfrak{B}, b) of

$$\left(Cl_r \times_{Cl_{r-1}} Cl_r\right) \times Y \longrightarrow Cl_r \times_{Cl_{r-1}} Cl_r$$

along

$$Z := \{(\tau, \tau', y) : \tau_r(y) = \tau'_r(y)\}$$

Theorem

lf

• \mathfrak{X} is quasiprojective

• Y is projective and smooth

then,

$$Cl_{r+1} \cong_{set th.} \mathfrak{B} \cup$$
 "exceptional components".

Second result on Ucs (notation)

Consider $F: Cl_{r+1} \rightarrow Cl_r \times_{Cl_{r-1}} Cl_r$ sending

$$(\tau_1,\ldots,\tau_r,\tau_{r+1})\longmapsto (\tau_1,\ldots,\tau_r; \tau_1,\ldots,\mathsf{bl}_{\tau_r}\circ\tau_{r+1})$$

• Observation $F|_{\mathfrak{B}} = b$ (On the example, $(\sigma, \tau) \rightarrow (\sigma; b|_{\sigma} \circ \tau)$)

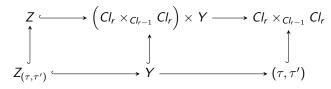
Second result on Ucs (notation)

Consider $F: Cl_{r+1} \rightarrow Cl_r \times_{Cl_{r-1}} Cl_r$ sending

$$(\tau_1,\ldots,\tau_r,\tau_{r+1})\longmapsto (\tau_1,\ldots,\tau_r; \tau_1,\ldots,\mathsf{bl}_{\tau_r}\circ\tau_{r+1})$$

• Observation $F|_{\mathfrak{B}} = b$ (On the example, $(\sigma, \tau) \rightarrow (\sigma; b|_{\sigma} \circ \tau)$)

Consider the flattening stratification of $Z \rightarrow Cl_r \times_{Cl_{r-1}} Cl_r$



The core is Δ_{Cl_r}

$$Cl_r \times_{Cl_{r-1}} Cl_r = \Delta_{Cl_r} \sqcup \bigsqcup_P D_P$$

Second result on Ucs (structure)

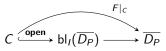
Theorem

lf

- $X \xrightarrow{\pi} Y$ is a steady family (to define C_r)
- X is quasiprojective
- Y is projective and smooth

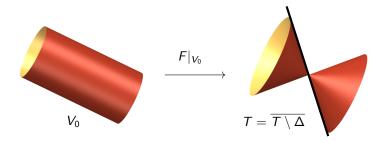
then for every irreducible component $C \subseteq Cl_{r+1}$, there is P with $F(C) \subseteq \overline{D_P}$

• if $D_P \neq \Delta_{Cl_r}$, then

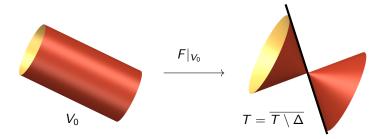


where I fails to be Cartier only on the diagonal $\Delta_{Cl_r} \cap \overline{D_P}$.

The component of (limits of) meeting lines



The component of (limits of) meeting lines



Moltes gràcies